
MATH 8210: Exam 2 Study Sheet

linear space: A set X is a linear space (vector space)
over a scalar field K if there exist two algebraic ope-
rations addition, + : X ×X → X, (x, y)→ x+ y and
scalar multiplication, · : K × X → X, (a, x) → a · x
such that they satisfy: ∀x, y, z ∈ X,∀a, b ∈ K

1. commutativity: x+ y = y + x

2. associativity: (x+ y) + z = x+ (y + z)

3. zero element: ∃0 ∈ X s.t. x+ 0 = 0 + x = x

4. inverse element: ∀x ∈ X,∃x ∈ X s.t. x+(−x) =
(−x) + x = 0

5. compatibility: a · (b · x) = (ab) · x

6. multiplicative identity: 1 · x = x

7. distribution: (a+ b) · x = ax+ bx

8. distribution: a · (x+ y) = a · x+ a · y

linear subspace: A subset Y ⊂ X is a linear subs-
pace of X, denoted by Y ≤ X if ∀a1, a2 ∈ K, y1, y2 ∈
Y , a1y1 + a2y2 ∈ Y .
span: The span of a subset A ⊂ X, denoted
as Span(A) or 〈A〉 is Span(A) = {

∑n
i=1 aixi|ai ∈

K, xi ∈ A, i = 1, · · · , n, n ∈ N}
linearly independent: A subset A ⊂ X is linearly
independent if

∑n
i=1 aixi = 0, ∀ai ∈ K, xi ∈ A =⇒

ai = 0, i = 1, 2, · · · , n
Hamel Basis: A subset A ⊂ X is a Hamel Basis of
X if A is linearly independent and Span(A) = X.
dimension: The dimension of X is the number of
elements in a Hamel Basis of X.
Theorem: Every nonzero vector space has a Hamel
Basis and all Hamel bases of X have the same number
of elements.
metric linear space (MLS): (X, d,+, ·) is called a
MLS if

• (X, d) is a metric space

• (X,+, ·) is a linear space (over R)

• + : X ×X → X and · : R ×X → X are conti-
nuous

Spaces Introduction

translation-scaling-invarient metric linear
space (TSI-MLS): (X, d,+·) is a TSI-MLS if

• (X, d) is a metric space

• (X,+·) is a linear space

• d(x + z, y + z) = d(x, y) and d(a · x, a · y) =
|a|d(x, y),∀x, y, z ∈ X, a ∈ R

normed linear space (NLS): (X, ||·||,+, ·) is a NLS
if (X,+·) is a linear space and there exists a norm
|| · || : X → R s.t.

• ||x|| ≥ 0, ||x|| = 0 ⇐⇒ x = 0
AKA: ||x|| = 0 =⇒ x = 0

• ||a · x|| = |a|||x||,∀a ∈ R, x ∈ X

• ||x+ y|| ≤ ||x||+ ||y||,∀x, y ∈ X

Theorem: TSI-MLS =⇒ MLS
Theorem: NLS = TSI-MLS
Banach Space: A Banach Space is a complete NLS.

Spaces Introduction Continued

convergent: (X, || · ||) a NLS. A sequence {xn} ⊂ X
is convergent if ∃x ∈ X s.t. ||xn − x|| → 0, n→∞
Cauchy: (X, || · ||) a NLS. A sequence {xn} ⊂ X is
Cauchy if ||xn − xm|| → 0, n,m→∞
convergent: (X, || · ||) a NLS. An infinite
series

∑∞
n=1 xn is convergent if ∃x ∈ X if

||
∑N
n=1 xn − x|| → 0, N → ∞. absolutely

convergent: (X, || · ||) a NLS.
∑∞
n=1 is absolutely

convergent if
∑∞
n=1 ||xn|| <∞.

Theorem: Let (X, || · ||) be a NLS. Then (X, || · ||)
is Banach ⇐⇒ If

∑∞
n=1 xn is absolutely convergent,

then
∑∞
n=1 xn is convergent.

Schauder Basis: Let (X, ||· ||) be a NLS. A sequence
{en} ⊂ X, en 6= 0 is a Schauder Basis of (X, || · ||)
if ∀x ∈ X,∃ a unique set of coefficients {an} ⊂ R
s.t. x =

∑∞
n=1 anen (i.e. ||x −

∑N
n=1 anen|| → 0 as

N →∞)
Lemma: Schauder Basis is linearly independent
Theorem: If (X, || · ||) has a Schauder Basis, then
(X, || · ||) is separable.

Sequences, Series, Schauder Basis

Linear Combination Theorem: Let (X, || · ||) be
a NLS and {xi}ni=1 be finitely many linearly indepen-
dent vectors. Then, ∃c > 0 s.t. c

∑n
i=1 |ai|||xi|| ≤

||
∑n
i=1 aixi||,∀ai ∈ R, i = 1, · · · , n.

Remarks:

||
n∑
i=1

aixi|| ≤
n∑
i=1

||aixi||

≤
n∑
i=1

|ai|||xi||

≤ C
n∑
i=1

|ai|

where C = max
1≤i≤n

||xi||

c̃

n∑
i=1

|ai| ≤ ||
n∑
i=1

aixi||

where c̃ = c min
1≤i≤n

||xi|| > 0

Theorem: Every finite dimensional NLS is Banach.
stronger: Let X be a vector space and || · ||1 and
|| · ||2 be two norms defined on X. || · ||1 is stronger
than || · ||2 if ∃M > 0 s.t. ||x||2 ≤M ||x||1,∀x ∈ X.
equivalent: || · ||1 is equivalent to || · ||2 if ∃m,M > 0
s.t. m||x||2 ≤ ||x||1 ≤M ||x||2,∀x ∈ X.
Remark: m,M > 0 are fixed numbers independent
of x.
Lemma: If || · ||1 is stronger than || · ||2, then

• The identity map i : (X, || · ||1) → (X, || · ||2) is
Lipschitz continuous.

• {xn} ⊂ (X, || · ||1) is convergent (Cauchy) =⇒
{xn} ⊂ (X, || · ||2) is also convergent (Cauchy).

• A ⊂ (X, || · ||1) is dense =⇒ A ⊂ (X, || · ||2 is
also dense.

• A ⊂ (X, ||·||2) open (closed) =⇒ A ⊂ (X, ||·||1)
open (closed)

Theorem: All norms on a finite dimensional vector
space are equivalent.

Finite Dimensional NLS
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Let (X, d) be a metric space and K ⊂ X
open cover: A collection of open sets {Ai}i∈I ⊂ X
is open cover of K if

⋃
i∈I Ai ⊃ K

compact: K is compact if every open cover of K
has a finite subcover. i.e. ∃{Aik}nk=1 ⊂ {Ai} s.t.⋃n
k=1Aik ⊃ K.

totally bounded: K is totally bounded if K can
be covered by finitely many open balls with arbi-
trary small radius. i.e. ∀ε > 0,∃{xi}ni=1 ⊂ K s.t.⋃n
i=1Bε(xi) ⊃ K.

sequentially compact: K is sequentially compact
if every sequence in K has a convergent subsequence.
i.e. ∀{xn} ⊂ K,∃x ∈ K, {xnk

} ⊂ {xn} s.t. xnk
→ x.

Lemma: (X, d) is a metric space and K ⊂ X. Then
K is totally bounded ⇐⇒ ∀{xn} ⊂ K, {xn} has a
Cauchy subsequence.
Theorem: K is sequentially compact ⇐⇒ K is to-
tally bounded and complete.
Theorem: (X, d) is a metric space and K ⊂ X. K
is compact ⇐⇒ K is sequentially compact.
Lemma: K is compact =⇒ K is closed and boun-
ded.
Theorem: (X, || · ||) is a finite dimensional NLS and
K ⊂ X. K is compact ⇐⇒ K is closed and boun-
ded.
Continuity Theorem: Let f be a continuous map-
ping between (X, dX) and (Y, dY ). If K ⊂ X is com-
pact, then f(K) ⊂ Y is compact.
Riesz’s Lemma: (X, || · ||) is a NLS and Y < X is
a proper closed subset of X. Then, ∀0 ∈ (0, 1),∃x ∈
X, ||x|| = 1 s.t. d(x, y) = infy∈Y ||x− y|| ≥ 0.
Remark: If dim(Y ) <∞, then ∃x ∈ X, ||x|| = 1 s.t.
d(x, y) = 1.
Theorem: (X, || · ||) a NLS. B1(0) is compact ⇐⇒
dim(X) <∞.

Compactness

linear operator: X,Y are vector spaces. A mapping
T : X → Y is called a linear operator if D(T ) ≤ X
and ∀x1, x2 ∈ D(T ), a1, a2 ∈ R, T (a1x1 + a2x2) =
a1T (x1) + a2T (x2)
Lemma: If T : X → Y is a linear operator, then

1. T (0) = 0

2. Range(T ) ≤ Y , Range(T ) = {T (x)|x ∈ D(T )}

3. Ker(T ) ≤ D(T ) ≤ X, Ker(T ) = {x ∈
D(T )|T (x) = 0}

4. dim(D(T )) = dim(Ker(T )) + dim(Range(T ))

5. Ker(T ) = {0} ⇐⇒ T is one-to-one ⇐⇒
∃T−1 : Range(T ) → D(T ) ⇐⇒ dim(D(T )) =
dim(Range(T ))

linear operator: L(X,Y ) = {T : X →
Y |T is linear}
Theorem: L(x, y) is a vector space under
(T1 + T2)(x) = T1(x) + T2(x) and (aT )(x) = aT (x)
continuous operator: C(X,Y ) = {T ∈
L(X,Y )|T is continuous} where X,Y are NLS
Lemma: C(X,Y ) ≤ L(X,Y )
bounded operator: Let X, || · ||X), (Y, || · ||Y ) be
NLS and T : X → Y . Then T is a bounded operator
if ∃M > 0 s.t. ||T (x)||Y ≤M ||x||X ,∀x ∈ X
Lemma: If T ∈ L(X,Y ), then T is bounded ⇐⇒
∀A ⊂ X bounded, T (A) ⊂ Y bounded.
bounded operator: B(X,Y ) = {T ∈
L(X,Y )|T is bounded}
Theorem: T ∈ L(X,Y ). TFAE:

• T is bounded.

• T is Lipschitz continuous.

• T is continuous.

• T is continuous at a single point x0 ∈ X.

Corollary: Let (X, || · ||X), (Y, || · ||Y ) be NLS and
T : X → Y be linear and bounded. Then,

1. If xn → x in (X, ||x||X), then T (xn)→ T (x) in
(Y, || · ||Y ).

2. Ker(T ) is closed in X.

Bounded Linear Operators

Lemma: Let (X, || · ||X), (Y, || · ||Y ) be NLS and
T ∈ B(X,Y ). Then,

inf{M > 0|||T (x)||Y ≤M ||x||X ,∀x ∈ X}

= sup
x 6=0

||T (x)||Y
||x||X

||T|| : Let (X, || · ||X), (Y, || · ||Y ) be NLS and T ∈
B(X,Y ). We define || · || : B(X,Y )→ R by

||T || =
∑
−x 6= 0

||T (x)||Y
||x||X

= sup
||x||X=1

||T (x)||Y

Theorem: (B(X,Y ), || · ||) is a NLS with norm || · ||
defined as above.
Remark: Therefore, (C(X,Y ), || · ||) is also a NLS
with the same norm.
Lemma: We have the following:

1. ||T (x)||Y ≤ ||T ||||x||X ,∀x ∈ X if T ∈ B(X,Y )

2. ||S ◦ T || ≤ ||S||||T || if S ∈ B(Y,Z) and T ∈
B(X,Y )

3. ||Tn|| ≤ ||T ||n,∀n ∈ N if T ∈ B(X,X).

Theorem: Let (X, || · ||X), (Y, || · ||Y ) be NLS and
dim(X) <∞. Then, B(X,Y ) = L(X,Y ).
Theorem: Let (X, || · ||X), (Y, || · ||Y ) be NLS. Then
B(X,Y ) is a Banach space if Y is a Banach space.

Bounded Linear Operators Continued
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