MATH 8210: Exam 2 Study Sheet

Spaces Introduction

linear space: A set X is a linear space (vector space)
over a scalar field K if there exist two algebraic ope-
rations addition, + : X x X = X, (z,y) —» = + y and
scalar multiplication, - : K x X — X, (a,2) > a-x
such that they satisfy: Vz,y,z € X,Va,b € K

1. commutativity: x +y =y +«x
2. associativity: (x+y)+z=z+ (y+ 2)
3. zero element: 30 € X st. 2 +0=0+z =2

4. inverse element: Vo € X,3z € X s.t. o+(—z) =
(—z)+z=0

5. compatibility: a- (b-x) = (ab) - z
multiplicative identity: 1-x =«

distribution: (a +b) -z = az + bx

® N>

distribution: a-(z +y)=a-x+a-y

linear subspace: A subset Y C X is a linear subs-
pace of X, denoted by Y < X if Vai,a2 € K, y1,y2 €
Y, a1y1 +azy2 €Y.

span: The span of a subset A C X, denoted
as Span(A) or (A) is Span(A) = {31, a;zila; €
K,z; € Aji=1,--- ,n,n € N}

linearly independent: A subset A C X is linearly
independent if Y  a;z; = 0, Va, € K,z; € A =
a; =0,i=1,2,---,n

Hamel Basis: A subset A C X is a Hamel Basis of
X if A is linearly independent and Span(4) = X.
dimension: The dimension of X is the number of
elements in a Hamel Basis of X.

Theorem: Every nonzero vector space has a Hamel
Basis and all Hamel bases of X have the same number
of elements.

metric linear space (MLS): (X,d, +,) is called a
MLS if

e (X,d) is a metric space
e (X,+,) is a linear space (over R)

o +: X xX — Xand- -:RxX — X are conti-

nuous

\.

Spaces Introduction Continued

translation-scaling-invarient = metric linear
space (TSI-MLS): (X,d,+-) is a TSI-MLS if

e (X,d) is a metric space
e (X,+) is a linear space

o dlz + z,y+ 2) = d(z,y) and d(a - z,a - y) =
\a|d(w,y),Vm,y,z€X,a€R

normed linear space (NLS): (X, ||-]|,+,-) isa NLS
if (X,+-) is a linear space and there exists a norm
[l-]]: X = Rs.t.

o [zl >0,]|z[| =0 <= 2z=0
AKA: ||z|]]=0 = x2=0

o lla-z|| = lall|z]|,Va e R,z € X
o |lz+yll <ll|l +[lyll, Vo,y € X

Theorem: TSI-MLS = MLS
Theorem: NLS = TSI-MLS
Banach Space: A Banach Space is a complete NLS.
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Sequences, Series, Schauder Basis

convergent: (X, ||-||) a NLS. A sequence {z,} C X
is convergent if 3z € X s.t. ||a, —z|| = 0,n = 00
Cauchy: (X, || -||) a NLS. A sequence {z,} C X is
Cauchy if ||z, — || = 0,n,m — 00

convergent: (X,|| - ||) a NLS. An infinite
serie; S, is convergent if Jx € X if
> ei®n — || — O,N — oo. absolutely

convergent: (X,||-]|) a NLS. > >°  is absolutely
convergent if 7 | [|z,|| < oo.

Theorem: Let (X,||-||) be a NLS. Then (X, || - |])
is Banach <= If 7 | z, is absolutely convergent,
then ZZOZI T, 1s convergent.

Schauder Basis: Let (X, ||-]|) be a NLS. A sequence
{en} C X,e, # 0 is a Schauder Basis of (X, || - ||)
if Vo € X,3 a unique set of coefficients {a,} C R
stz =3 ane, (e |lz = XN anen]| = 0 as
N — 00)

Lemma: Schauder Basis is linearly independent
Theorem: If (X, || ||) has a Schauder Basis, then
(X, || -]]) is separable.

Finite Dimensional NLS

Linear Combination Theorem: Let (X, || -||) be
a NLS and {z;}?_; be finitely many linearly indepen-
dent vectors. Then, Jc¢ > 0 s.t. D> 1, |ag|||zi]| <
>0 aixil|,Ya; ERi=1,--- ,n.

Remarks:

n n
1Y aswil| < lla]]
=1 =1
n
< Z|ai,\|\$¢\|
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n
<CY ail
i=1

where C'= max ||z
1<i<n

n n
&> Jail < 13wl
=1 =1

where ¢ = ¢ min ||z;|| >0
1<i<n

Theorem: Every finite dimensional NLS is Banach.
stronger: Let X be a vector space and || - ||; and
| - ||2 be two norms defined on X. ||-]|; is stronger
than || - ||2 if 3IM > 0 s.t. ||z||]2 < M||z||1,Vz € X.
equivalent: ||-||; is equivalent to || - ||z if 3m, M >0
s.t. m||z|l2 < |lz|l < M||z||2,Vz € X.

Remark: m, M > 0 are fixed numbers independent
of x.

Lemma: If || - ||; is stronger than || - ||2, then

e The identity map i : (X, || - [l1) = (X, ]| - ||2) is

Lipschitz continuous.

o {z,} C (X,]||-|]1) is convergent (Cauchy) =
{zn} C (X,]|]-||2) is also convergent (Cauchy).

o AC (X,]|-]1) is dense = A C (X,]|-]]2 is
also dense.

e AC (X,||||2) open (closed) = A C (X, ||-||1)
open (closed)

Theorem: All norms on a finite dimensional vector
space are equivalent.




Compactness

Let (X, d) be a metric space and K C X

open cover: A collection of open sets {A;}ier C X
is open cover of K if ( J;c; A; D K

compact: K is compact if every open cover of K
has a finite subcover. ie. 3{A; }}_, C {4} s.t.
UZ:I Aik D K.

totally bounded: K is totally bounded if K can
be covered by finitely many open balls with arbi-
trary small radius. ie. Ve > 0,3{x;}7.; C K s.t.
Uizt Be(z:) O K.

sequentially compact: K is sequentially compact
if every sequence in K has a convergent subsequence.
ie. V{x,} C K,3z € K,{z,, } C{zp} s.t. zp, — .
Lemma: (X, d) is a metric space and K C X. Then
K is totally bounded <= V{z,} C K,{z,} has a
Cauchy subsequence.

Theorem: K is sequentially compact <— K is to-
tally bounded and complete.

Theorem: (X,d) is a metric space and K C X. K
is compact <= K is sequentially compact.
Lemma: K is compact = K is closed and boun-
ded.

Theorem: (X, ||-]|) is a finite dimensional NLS and
K C X. K is compact <= K is closed and boun-
ded.

Continuity Theorem: Let f be a continuous map-
ping between (X,dx) and (Y,dy). If K C X is com-
pact, then f(K) C Y is compact.

Riesz’s Lemma: (X,||-]|)isa NLSand ¥ < X is
a proper closed subset of X. Then, V0 € (0,1),3x €
X, ||z = 1 s.t. d(z,y) = infyey ||z —y|| > 0.
Remark: If dim(Y) < oo, then Iz € X, ||z]| =1 s.t.
d(z,y) = 1.

Theorem: (X, ||-||) a NLS. B1(0) is compact <=
dim(X) < oo.

Bounded Linear Operators

linear operator: X,Y are vector spaces. A mapping
T:X — Y is called a linear operator if D(T) < X
and Vzi,zo € D(T),a1,a2 € R, T(a1z1 + agxs) =
a1 T (1) + a2T(z2)

Lemma: If T : X — Y is a linear operator, then

1. T(0) =0
2. Range(T) <Y, Range(T) = {T(z)|z € D(T)}

3. Ker(T) < D(T) < X, Ker(T) = {z €
D(T)|T(x) = 0}
4. dim(D(T)) = dim(Ker(T)) + dim(Range(T))

5. Ker(T) = {0} <= T is one-to-one <=
IT~1: Range(T) — D(T) <= dim(D(T)) =
dim(Range(T))

linear operator: L(X,Y) = {T : X —
Y|T is linear}
Theorem:  L(z,y) is a vector space under

(Th + To)(z) = Ti(z) + Ta(z) and (aT)(x) = aT'(x)
continuous operator: C(X,Y) = {T €
L(X,Y)|T is continuous} where X,Y are NLS
Lemma: C(X,Y) < L(X,Y)

bounded operator: Let X, || - ||x),(Y,|| - ||ly) be
NLS and T : X — Y. Then T is a bounded operator
if IM > 0 s.t. ||T(2)|ly < M||z||x,Vz € X
Lemma: If T € £L(X,Y), then T is bounded <—
VA C X bounded, T(A) C Y bounded.

bounded operator: BX,Y) = {T €
L(X,Y)|T is bounded}

Theorem: T € £(X,Y). TFAE:

e T is bounded.

e T is Lipschitz continuous.

e T is continuous.

e T is continuous at a single point xg € X.

Corollary: Let (X,|| - ||x),(Y,|| - |ly) be NLS and
T :X — Y be linear and bounded. Then,

1. If , —» z in (X, ||z||x), then T(z,,) — T(z) in
Y[l ly)-

2. Ker(T) is closed in X.

Bounded Linear Operators Continued

Lemma: Let (X,]|| - ||x),(Y,]| - |ly) be NLS and
T € B(X,Y). Then,

inf{M > 0|||T(z)|ly < M||z||x,Vx € X}

— sup |17 (2)[ly

a0 ||7][x

[|T||: Let (X,|] - ||lx), (Y]] - |ly) be NLS and T €

B(X,Y). We define || - || : B(X,Y) — R by
||j (-%')HY
T :g —x#0——F"—"—"—= sup ||T(x

Theorem: (B(X,Y),||-]|) is a NLS with norm || - ||
defined as above.

Remark: Therefore, (C(X,Y),]| - ||) is also a NLS
with the same norm.

Lemma: We have the following:

LT (@)ly < [[T][[|=]|x, Ve € X if T € B(X,Y)

2. ISoT|| < |IS|IT]] it S € B(Y,Z) and T €
B(X,Y)

3T < |IT||",Vne N if T € B(X, X).
Theorem: Let (X,|| - ||x),(Y,|| - |ly) be NLS and
dim(X) < co. Then, B(X,Y) = L(X,Y).

Theorem: Let (X,||-||x),(Y,||-|]y) be NLS. Then
B(X,Y) is a Banach space if Y is a Banach space.




