MATH 8210: Exam 2 Study Sheet

Spaces Introduction **linear space:** A set X is a linear space (vector space) t over a scalar field K if there exist two algebraic opes rations addition, $+: X \times X \to X, (x, y) \to x + y$ and scalar multiplication, $\cdot : \mathbb{K} \times X \to X, (a, x) \to a \cdot x$ such that they satisfy: $\forall x, y, z \in X, \forall a, b \in \mathbb{K}$ 1. commutativity: x + y = y + x2. associativity: (x + y) + z = x + (y + z)3. zero element: $\exists \mathbf{0} \in X$ s.t. $x + \mathbf{0} = \mathbf{0} + x = x$ 4. inverse element: $\forall x \in X, \exists x \in X \text{ s.t. } x + (-x) =$ (-x) + x = 05. compatibility: $a \cdot (b \cdot x) = (ab) \cdot x$ 6. multiplicative identity: $1 \cdot x = x$ 7. distribution: $(a+b) \cdot x = ax + bx$ 8. distribution: $a \cdot (x + y) = a \cdot x + a \cdot y$ **linear subspace:** A subset $Y \subset X$ is a linear subspace of X, denoted by Y < X if $\forall a_1, a_2 \in \mathbb{K}, y_1, y_2 \in$ $Y, a_1y_1 + a_2y_2 \in Y.$ **span:** The span of a subset $A \subset X$, denoted as Span(A) or $\langle A \rangle$ is $Span(A) = \{\sum_{i=1}^{n} a_i x_i | a_i \in \}$ $\mathbb{K}, x_i \in A, i = 1, \cdots, n, n \in \mathbb{N}\}$ **linearly independent:** A subset $A \subset X$ is linearly (independent if $\sum_{i=1}^{n} a_i x_i = \mathbf{0}, \forall a_i \in \mathbb{K}, x_i \in A \implies$ $a_i = 0, i = 1, 2, \cdots, n$ S **Hamel Basis:** A subset $A \subset X$ is a Hamel Basis of X if A is linearly independent and Span(A) = X. **dimension:** The dimension of X is the number of (elements in a Hamel Basis of X. **Theorem:** Every nonzero vector space has a Hamel Basis and all Hamel bases of X have the same number of elements. metric linear space (MLS): $(X, d, +, \cdot)$ is called a MLS if i • (X, d) is a metric space S • $(X, +, \cdot)$ is a linear space (over \mathbb{R})

 $\bullet \ +: X \times X \to X \text{ and } \cdot: \mathbb{R} \times X \to X \text{ are continuous}$

space (TSI-MLS): $(X, d, +\cdot)$ is a TSI-MLS if • (X, d) is a metric space • $(X, +\cdot)$ is a linear space • $d(x + z, y + z) = d(x, y)$ and $d(a \cdot x, a \cdot y) = a d(x, y), \forall x, y, z \in X, a \in \mathbb{R}$ normed linear space (NLS): $(X, \cdot , +, \cdot)$ is a NLS if $(X, +\cdot)$ is a linear space and there exists a norm $ \cdot : X \to \mathbb{R}$ s.t. • $ x \ge 0, x = 0 \iff x = 0$ AKA: $ x = 0 \implies x = 0$ • $ a \cdot x = a x , \forall a \in \mathbb{R}, x \in X$ • $ x + y \le x + y , \forall x, y \in X$ Theorem: TSI-MLS \implies MLS Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty} 1$ is absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty} 1$ is absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty} 1$ is absolutely convergent: (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	v
space (TSI-MLS): $(X, d, +\cdot)$ is a TSI-MLS if • (X, d) is a metric space • $(X, +\cdot)$ is a linear space • $d(x + z, y + z) = d(x, y)$ and $d(a \cdot x, a \cdot y) = a d(x, y), \forall x, y, z \in X, a \in \mathbb{R}$ normed linear space (NLS): $(X, \cdot , +, \cdot)$ is a NLS if $(X, +\cdot)$ is a linear space and there exists a norm $ \cdot : X \to \mathbb{R}$ s.t. • $ x \ge 0, x = 0 \iff x = 0$ AKA: $ x = 0 \implies x = 0$ • $ a \cdot x = a x , \forall a \in \mathbb{R}, x \in X$ • $ x + y \le x + y , \forall x, y \in X$ Theorem: TSI-MLS \implies MLS Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty} 1$ is absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty} 1$ is absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty} 1$ is absolutely convergent: (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	Spaces Introduction Continued
• $(X, +\cdot)$ is a linear space • $d(x + z, y + z) = d(x, y)$ and $d(a \cdot x, a \cdot y) = a d(x, y), \forall x, y, z \in X, a \in \mathbb{R}$ normed linear space (NLS): $(X, \cdot , +, \cdot)$ is a NLS if $(X, +\cdot)$ is a linear space and there exists a norm $ \cdot : X \to \mathbb{R}$ s.t. • $ x \ge 0, x = 0 \iff x = 0$ • $ a \cdot x = a x , \forall a \in \mathbb{R}, x \in X$ • $ x + y \le x + y , \forall x, y \in X$ Theorem: TSI-MLS \implies MLS Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent: (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	
• $d(x + z, y + z) = d(x, y)$ and $d(a \cdot x, a \cdot y) = a d(x, y), \forall x, y, z \in X, a \in \mathbb{R}$ normed linear space (NLS): $(X, \cdot , +, \cdot)$ is a NLS if $(X, +\cdot)$ is a linear space and there exists a norm $ \cdot : X \to \mathbb{R}$ s.t. • $ x \ge 0, x = 0 \iff x = 0$ $AKA: x = 0 \implies x = 0$ • $ a \cdot x = a x , \forall a \in \mathbb{R}, x \in X$ • $ x + y \le x + y , \forall x, y \in X$ Theorem: TSI-MLS \implies MLS Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent: (X, \cdot) be a NLS. Then (X, \cdot) is Banach $\iff \text{If } \sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	• (X, d) is a metric space
$ a d(x,y), \forall x, y, z \in X, a \in \mathbb{R}$ normed linear space (NLS): $(X, \cdot , +, \cdot)$ is a NLS if $(X, +\cdot)$ is a linear space and there exists a norm $ \cdot : X \to \mathbb{R}$ s.t. • $ x \ge 0, x = 0 \iff x = 0$ AKA: $ x = 0 \implies x = 0$ • $ a \cdot x = a x , \forall a \in \mathbb{R}, x \in X$ • $ x + y \le x + y , \forall x, y \in X$ Theorem: TSI-MLS \implies MLS Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	• $(X, +\cdot)$ is a linear space
if $(X, +\cdot)$ is a linear space and there exists a norm $ \cdot : X \to \mathbb{R}$ s.t. • $ x \ge 0, x = 0 \iff x = 0$ AKA: $ x = 0 \implies x = 0$ • $ a \cdot x = a x , \forall a \in \mathbb{R}, x \in X$ • $ x + y \le x + y , \forall x, y \in X$ Theorem: TSI-MLS \implies MLS Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent if $\sum_{n=1}^{\infty} x_n < \infty$. Theorem: Let (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	
AKA: $ x = 0 \implies x = 0$ • $ a \cdot x = a x , \forall a \in \mathbb{R}, x \in X$ • $ x + y \le x + y , \forall x, y \in X$ Theorem: TSI-MLS \implies MLS Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent if $\sum_{n=1}^{\infty} x_n < \infty$. Theorem: Let (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	normed linear space (NLS): $(X, \cdot , +, \cdot)$ is a NLS if $(X, +\cdot)$ is a linear space and there exists a norm $ \cdot : X \to \mathbb{R}$ s.t.
• $ x + y \leq x + y , \forall x, y \in X$ Theorem: TSI-MLS \implies MLS Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent: (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	
Theorem: TSI-MLS \implies MLS Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent: (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	• $ a \cdot x = a x , \forall a \in \mathbb{R}, x \in X$
Theorem: NLS = TSI-MLS Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent: (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	• $ x + y \le x + y , \forall x, y \in X$
Banach Space: A Banach Space is a complete NLS. Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent: (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	Theorem: TSI-MLS \implies MLS
Sequences, Series, Schauder Basis convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent: (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	Theorem: $NLS = TSI-MLS$
convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ Convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent if $\sum_{n=1}^{\infty} x_n < \infty$. Theorem: Let (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	Banach Space: A Banach Space is a complete NLS.
convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ Convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if $ \sum_{n=1}^{N} x_n - x \to 0, N \to \infty$. absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent: (X, \cdot) a NLS. $\sum_{n=1}^{\infty}$ is absolutely convergent if $\sum_{n=1}^{\infty} x_n < \infty$. Theorem: Let (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	Sequences, Series, Schauder Basis
convergent: (X, \cdot) a NLS. $\sum_{n=1}$ is absolutely convergent if $\sum_{n=1}^{\infty} x_n < \infty$. Theorem: Let (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	convergent: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is convergent if $\exists x \in X$ s.t. $ x_n - x \to 0, n \to \infty$ Cauchy: (X, \cdot) a NLS. A sequence $\{x_n\} \subset X$ is Cauchy if $ x_n - x_m \to 0, n, m \to \infty$ convergent: (X, \cdot) a NLS. An infinite series $\sum_{n=1}^{\infty} x_n$ is convergent if $\exists x \in X$ if
then $\sum_{n=1}^{n} x_n$ is convergent. Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	convergent: (X, \cdot) a NLS. $\sum_{n=1}$ is absolutely convergent if $\sum_{n=1}^{\infty} x_n < \infty$.
Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$	Theorem: Let (X, \cdot) be a NLS. Then (X, \cdot) is Banach \iff If $\sum_{n=1}^{\infty} x_n$ is absolutely convergent, then $\sum_{n=1}^{\infty} x_n$ is convergent
s.t. $x = \sum_{n=1}^{\infty} a_n e_n$ (i.e. $ x - \sum_{n=1}^{N} a_n e_n \to 0$ as	Schauder Basis: Let (X, \cdot) be a NLS. A sequence $\{e_n\} \subset X, e_n \neq 0$ is a Schauder Basis of (X, \cdot) if $\forall x \in X, \exists$ a unique set of coefficients $\{a_n\} \subset \mathbb{R}$
$N \to \infty$)	s.t. $x = \sum_{n=1}^{\infty} a_n e_n$ (i.e. $ x - \sum_{n=1}^{N} a_n e_n \to 0$ as $N \to \infty$)

Lemma: Schauder Basis is linearly independent **Theorem:** If $(X, || \cdot ||)$ has a Schauder Basis, then $(X, || \cdot ||)$ is separable.

Finite Dimensional NLS

Linear Combination Theorem: Let $(X, || \cdot ||)$ be a NLS and $\{x_i\}_{i=1}^n$ be finitely many linearly independent vectors. Then, $\exists c > 0$ s.t. $c \sum_{i=1}^n |a_i| ||x_i|| \leq$ $|| \sum_{i=1}^n a_i x_i ||, \forall a_i \in \mathbb{R}, i = 1, \dots, n.$ **Remarks:**

$$\begin{split} \hat{C}a_i x_i || &\leq \sum_{i=1}^n ||a_i x_i|| \\ &\leq \sum_{i=1}^n |a_i| ||x_i|| \\ &\leq C \sum_{i=1}^n |a_i| \\ &\text{where } C = \max_{1 \leq i \leq n} ||x_i|| \end{split}$$

$$\tilde{c}\sum_{i=1}^{n} |a_i| \le ||\sum_{i=1}^{n} a_i x_i||$$

where $\tilde{c} = c \min_{1 \le i \le n} ||x_i|| > 0$

Theorem: Every finite dimensional NLS is Banach. **stronger:** Let X be a vector space and $|| \cdot ||_1$ and $|| \cdot ||_2$ be two norms defined on X. $|| \cdot ||_1$ is stronger than $|| \cdot ||_2$ if $\exists M > 0$ s.t. $||x||_2 \leq M ||x||_1, \forall x \in X$. **equivalent:** $|| \cdot ||_1$ is equivalent to $|| \cdot ||_2$ if $\exists m, M > 0$ s.t. $m ||x||_2 \leq ||x||_1 \leq M ||x||_2, \forall x \in X$. **Remark:** m, M > 0 are fixed numbers independent

of x.

Lemma: If $|| \cdot ||_1$ is stronger than $|| \cdot ||_2$, then

- The identity map $i: (X, || \cdot ||_1) \to (X, || \cdot ||_2)$ is Lipschitz continuous.
- $\{x_n\} \subset (X, || \cdot ||_1)$ is convergent (Cauchy) \implies $\{x_n\} \subset (X, || \cdot ||_2)$ is also convergent (Cauchy).
- $A \subset (X, || \cdot ||_1)$ is dense $\implies A \subset (X, || \cdot ||_2)$ is also dense.
- $A \subset (X, ||\cdot||_2)$ open (closed) $\implies A \subset (X, ||\cdot||_1)$ open (closed)

Theorem: All norms on a finite dimensional vector space are equivalent.

Compactness

Let (X, d) be a metric space and $K \subset X$ **open cover:** A collection of open sets $\{A_i\}_{i \in I} \subset X$ is open cover of K if $\bigcup_{i \in I} A_i \supset K$ **compact:** K is compact if every open cover of Khas a finite subcover. i.e. $\exists \{A_{i_k}\}_{k=1}^n \subset \{A_i\}$ s.t. $\bigcup_{k=1}^{n} A_{i_k} \supset K.$ totally bounded: K is totally bounded if K can be covered by finitely many open balls with arbitrary small radius. i.e. $\forall \epsilon > 0, \exists \{x_i\}_{i=1}^n \subset K$ s.t. $\bigcup_{i=1}^{n} B_{\epsilon}(x_i) \supset K.$ sequentially compact: K is sequentially compact if every sequence in K has a convergent subsequence. i.e. $\forall \{x_n\} \subset K, \exists x \in K, \{x_{n_k}\} \subset \{x_n\} \text{ s.t. } x_{n_k} \to x.$ **Lemma:** (X, d) is a metric space and $K \subset X$. Then K is totally bounded $\iff \forall \{x_n\} \subset K, \{x_n\}$ has a Cauchy subsequence. **Theorem:** K is sequentially compact \iff K is totally bounded and complete. **Theorem:** (X, d) is a metric space and $K \subset X$. K is compact $\iff K$ is sequentially compact. **Lemma:** K is compact \implies K is closed and bounded. **Theorem:** $(X, || \cdot ||)$ is a finite dimensional NLS and $K \subset X$. K is compact $\iff K$ is closed and bounded. Continuity Theorem: Let f be a continuous mapping between (X, d_X) and (Y, d_Y) . If $K \subset X$ is compact, then $f(K) \subset Y$ is compact. **Riesz's Lemma:** $(X, || \cdot ||)$ is a NLS and Y < X is a proper closed subset of X. Then, $\forall \mathbf{0} \in (0, 1), \exists x \in$ X, ||x|| = 1 s.t. $d(x, y) = \inf_{y \in Y} ||x - y|| \ge 0$. **Remark:** If $dim(Y) < \infty$, then $\exists x \in X, ||x|| = 1$ s.t. d(x, y) = 1.**Theorem:** $(X, || \cdot ||)$ a NLS. $\overline{B}_1(\mathbf{0})$ is compact \iff $dim(X) < \infty$.

Bounded Linear Operators **linear operator:** X, Y are vector spaces. A mapping $T: X \to Y$ is called a linear operator if $D(T) \leq X$ and $\forall x_1, x_2 \in D(T), a_1, a_2 \in \mathbb{R}, T(a_1x_1 + a_2x_2) =$ $a_1T(x_1) + a_2T(x_2)$ **Lemma:** If $T: X \to Y$ is a linear operator, then 1. T(0) = 02. Range(T) < Y, $Range(T) = \{T(x) | x \in D(T)\}$ 3. Ker(T) < D(T) < X, $Ker(T) = \{x \in$ $D(T)|T(x) = \mathbf{0}\}$ 4. dim(D(T)) = dim(Ker(T)) + dim(Range(T))5. $Ker(T) = \{\mathbf{0}\} \iff T$ is one-to-one \iff $\exists T^{-1} : Range(T) \to D(T) \iff dim(D(T)) =$ dim(Range(T))linear operator: $\mathcal{L}(X,Y) = \{T : X \rightarrow$ Y|T is linear} Theorem: $\mathcal{L}(x,y)$ is a vector space under $(T_1 + T_2)(x) = T_1(x) + T_2(x)$ and (aT)(x) = aT(x)continuous operator: $C(X,Y) = \{T \in$ $\mathcal{L}(X, Y)|T$ is continuous} where X, Y are NLS Lemma: $C(X,Y) \leq \mathcal{L}(X,Y)$ **bounded operator:** Let $X, || \cdot ||_X), (Y, || \cdot ||_Y)$ be NLS and $T: X \to Y$. Then T is a bounded operator if $\exists M > 0$ s.t. $||T(x)||_Y \leq M ||x||_X, \forall x \in X$ **Lemma:** If $T \in \mathcal{L}(X, Y)$, then T is bounded \iff $\forall A \subset X$ bounded, $T(A) \subset Y$ bounded. bounded operator: $B(X,Y) = \{T \in$ $\mathcal{L}(X,Y)|T \text{ is bounded}\}$ **Theorem:** $T \in \mathcal{L}(X, Y)$. TFAE: • T is bounded. • T is Lipschitz continuous. • T is continuous. • T is continuous at a single point $x_0 \in X$. **Corollary:** Let $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ be NLS and $T: X \to Y$ be linear and bounded. Then,

- 1. If $x_n \to x$ in $(X, ||x||_X)$, then $T(x_n) \to T(x)$ in $(Y, ||\cdot||_Y)$.
- 2. Ker(T) is closed in X.

Bounded Linear Operators Continued Lemma: Let $(X, || \cdot ||_X), (Y, || \cdot ||_Y)$ be NLS and $T \in \mathcal{B}(X, Y)$. Then, $\inf\{M > 0 || || T(x) ||_{Y} < M || x ||_{X}, \forall x \in X\}$ $= \sup_{x \neq 0} \frac{||T(x)||_{Y}}{||x||_{X}}$ $||\mathbf{T}||$: Let $(X, ||\cdot||_X), (Y, ||\cdot||_Y)$ be NLS and $T \in$ $\mathcal{B}(X,Y)$. We define $||\cdot||: \mathcal{B}(X,Y) \to \mathbb{R}$ by $||T|| = \sum -x \neq \mathbf{0} \frac{||T(x)||_Y}{||x||_X} = \sup_{||x||_X = 1} ||T(x)||_Y$ **Theorem:** $(\mathcal{B}(X,Y), ||\cdot||)$ is a NLS with norm $||\cdot||$ defined as above. **Remark:** Therefore, $(\mathcal{C}(X, Y), || \cdot ||)$ is also a NLS with the same norm. **Lemma:** We have the following: 1. $||T(x)||_Y \leq ||T||||x||_X, \forall x \in X \text{ if } T \in \mathcal{B}(X,Y)$ 2. $||S \circ T|| \leq ||S||||T||$ if $S \in \mathcal{B}(Y,Z)$ and $T \in$ $\mathcal{B}(X,Y)$ 3. $||T^n|| < ||T||^n, \forall n \in N \text{ if } T \in \mathcal{B}(X, X).$ **Theorem:** Let $(X, || \cdot ||_X), (Y, || \cdot ||_Y)$ be NLS and $dim(X) < \infty$. Then, $\mathcal{B}(X, Y) = \mathcal{L}(X, Y)$. **Theorem:** Let $(X, || \cdot ||_X), (Y, || \cdot ||_Y)$ be NLS. Then $\mathcal{B}(X,Y)$ is a Banach space if Y is a Banach space.